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Abstract: Lensknob is a component that transmits light to users. It is essential to minimize the 

deformation to transmit the light uniformly. As a method of finding injection molding parameters 

capable of minimizing the deformation, the amount of deformation of the Lensknob was predicted in 

advance by numerical analysis of the injection molding. However, because it takes a considerable 

amount of time to analyze, we used the Decision tree as a Machine Learning model. As the injection 

molding parameters, we set the melting temperature, cooling time, holding time, holding pressure, and 

ram speed. We set the injection molding parameters based on the range recommended by Moldflow. A 

full factor method of factor 5 level 3 was applied in the experiment. We predicted the parameters for 

minimizing the deformation through the Decision tree learned with 243 experimental data. We set the 

criteria to evaluate the performance of the Decision tree. The parameters predicted by the Decision tree 

improved the deformation by about 10.37%. 
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1.Introduction 
Light-guide injection products are parts that uniformly diffuse light from light sources and transmit 

a constant luminance to users. Light-guide parts are also assembled in knobs located in the center 

fascia of automobiles (a control panel space where various buttons for manipulating functions such 

as audio and air conditioner are gathered). In this study, light-guide components assembled to these 

knobs were used. The part is called a Lensknob. Figures 1a and 1b show the modeling of the 

automobile center fascia and Lensknob, respectively. The Lensknob is manufactured using 

transparent polycarbonate (PC) resin characterized by high dimensional accuracy and luminance 

uniformity. Injection-molded parts requiring optical properties require more precise process 

parameters than general injection molded parts [1-5]. 

 

 
Figure 1. a) Center fascia of automobiles b) Lensknob assemble 
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Injection molding simulation is used to control molding parameters for precise injection molding. 

Injection molding simulation can predict the overall flow, cooling, and deformation processes for 

injection molding processes and predict potential problems such as sink marks, air traps, and short 

shots [6-10]. However, when simulating a small, molded article that requires sophisticated dimensional 

precision, there is a disadvantage in that the time needed for the analysis increases due to the increase in 

the number of meshes. 

For this reason, we can use machine learning algorithms to control faster and more sophisticated 

molding parameters. Machine learning algorithms are a subset of artificial intelligence that computers 

use to analyze, learn, and make decisions based on what they have learned. Recently, more studies 

have been published that make predictions using machine learning algorithms for injection molding.  

As a related study on the optimization of injection molding, Gao et al. proposed an optimization 

method using a Kriging surrogate model to minimize the warpage of the injection molding in the 

study. By introducing an adaptive optimization method using the Kriging surrogate model, they 

reduced the warpage of a mobile phone-shaped molded product by 38%. Additionally, they reduced 

the deformation of the box model molded products by 24.6% in the same manner [11-12]. Gao et al. 

investigated the relationship between the shear viscosity and the pressure-specific volume–

temperature (pvT) of low-density polyethylene (LDPE). The investigation of the pvT relationship 

shows that the total warpage increases when the pvT model constant is adjusted to mimic fast cooling 

parameters [13]. Hwang et al. predicted process parameters capable of minimizing deformation using 

a decision-tree. The predicted model showed a confidence level of 97.5%, and there was an 

improvement effect of 7.7% compared to the existing deformation [14]. Ahmed et al. conducted a 

study to develop a prediction model to optimize the deformation of PVC injection molded products 

as drip chambers of medical syringes using ensemble machine learning algorithms. They developed 

a predictive model by applying the Random forest model and the Gradient Boosted regression tree. 

The Random forest model showed a 96.75% accuracy, and the Gradient Boosted regression tree 

showed an accuracy of 90.63% [15]. Chen et al. used the Taguchi method, adding backpropagation 

neural networks genetic algorithms to optimize the injection molding. To summarize, they confirmed 

that the proposed system effectively optimizes the setup procedures of multiple-input single-output 

(MISO) plastic injection molding and can significantly benefit quality and cost [16]. Many studies 

have optimized the process of injection molding using an artificial neural network (ANN). Yang et 

al. confirmed a high level of accuracy and reliability with an average deviation from the target mass 

of 0.15+0.07 g using an ANN [17]. Moayyedian et al. applied Taguchi methods to demonstrate 

compatibility between the ANN model and the Taguchi method at 1.5 percent [18]. Altan et al. 

investigated the effect of injection molding of samples of the same shape on each contraction using 

PP and PS. They confirmed an excellent error accuracy of 8.6% (PP) and 0.48% (PS) [19]. Tercan et 

al. using Transfer-learning based on the ANN, confirmed that Transfer-learning accelerates the 

network learning phase and improves the predictive performance with fewer data values [20]. Ke et 

al. propose a multi-layer perceptron (MLP) neural network model combined with quality indicators 

to quickly and automatically predict the geometry of the finished product. The results indicate that 

the training and testing of the one-stage holding pressure index, pressure integration index, residual 

pressure drop index, and peak pressure index for geometric width are accurate (accuracy exceeds 

92%), demonstrating the proposed method's feasibility [21]. Lee et al. conducted a study to derive 

the optimal injection parameters for mold products using a deep neural network (DNN) algorithm 

that added a hidden layer to the ANN. The predicted value obtained an accuracy of 0.8–0.9. However, 

they could not confirm more accurate expectations due to the limitation of the amount of data. [22]. 

Shi et al. proposed the ANN model and expected improvement (EI) function integration scheme, and 

they confirmed that this method could efficiently reduce deformation and converge quickly to 

optimized solutions [23]. Ozcelik et al. proposed an effective optimizat ion method using the ANN 

and genetic algorithms. In conclusion, genetic algorithm (GA) reduced the deformation of the initial 

model signal and improved the deformation by 51% [24]. Kurtaran et al. confirmed that the 
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deformation of a bus ceiling lamp base was reduced by 46.5% using the ANN and GA [25]. Tsai et 

al. combined the ANN and GA to create an inverse model to improve the accuracy of an optical lens 

shape. The results obtained using the inverse model met the accuracy of the optical lens form [26]. 

Shen et al. propose a method that combines artificial neural networks and genetic algorithms 

(ANN/GA) to optimize the injection molding process. In this method, they develop a BP neural 

network model to map complex nonlinear relationships between process conditions and quality 

indices of injection molded parts and use GA for process condition optimization as a fitness function 

based on the ANN model. The results show that the combined ANN/GA method effectively optimizes 

the injection molding process [27]. Xu et al. proposed an artificial neural network and particle cluster 

optimization (PSO) algorithm combination method, which reduced the maximum von Mises stress of 

the initial model by 12.9% [28]. 

This study used Decision tree and computer- aided engineering (CAE) to derive molding process 

parameters capable of minimizing the deformation of Lensknob molded products.  The surrogate 

model uses Moldflow software. Moldflow estimates the injection molded product's quality by predicting 

the polymer's flow according to the process condition setting. In Moldflow, polymer flow is non-

Newtonian, non-isothermal, and incompressible behavior and the governing equation uses mass 

conservation, momentum conservation, and energy conservation equations as the basis. Injection 

molding analysis can predict the quality of the molded product without actually performing injection 

molding. However, it takes a considerable amount of computing consumed time to simulate many cases. 

We can reduce this consumed time by using the decision tree. Unlike machine learning models ANN 

and DNN used to predict the quality of injection molding, Decision Tree has the advantage of 

transparently checking the process in which the predicted value is determined. The results of this paper 

show that the method using a Decision tree and injection molding analysis contributed to deformation-

optimization. 

The remainder of this paper consists of: Section 2 provides detailed information and methodology on 

injection molding analysis. Section 3 implements deformation optimization by applying a decision tree 

and evaluating the values predicted by the decision tree. 

 

2. Materials and methods 
2.1. Injection molding analysis of the Lensknob 

 

 
Figure 2. Flowchart of research progress 

 

Figure 2 shows the flowchart that describes the progress of this study. Figure 3 shows the 

Lensknob used in this study. The center of the Lensknob is circular, and there are several ribs on the 

back. It consists of three products of different sizes. Figure 3a is the front surface of the molded 

product, and each product is indicated by ①, ②, and ③. The size of the molded part is about ① 

29*24*16 mm, ② 32*26*18 mm, ③ 31*28*20 mm, and the average thickness is about 2 mm. 
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Samyang Company's PC Trirex 3022IR was used as the resin for the injection molding analysis. 

Figure 4 shows the pressure-specific volume–temperature (pvT) diagram of the PC Trirex 3022IR. 

In addition, Table 1 shows the range of the mold temperature and melt temperature parameters of the 

PC Trirex 3022IR recommended by Moldflow 

 

 
Figure 3. 3D model: a) front side b) back side c) moving core plate 

d) fixed core plate e) full of mold 

 
Figure 4. The pvT properties of the PC Trirex 3022IR 

 

Table 1. Recommended range of the injection molding process parameter (unit: °C) 
PC Trirex 3022IR Mold temperature Melt temperature 

Lower limit 70 275 

Upper limit 90 315 

 

 
Figure 5. Experiment injection molding machine (IDE100EN II) 
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Figure 5 shows the injection molding machine, and Figure 6 shows the actual injection mold applied 

to this study. Figure 6b and c show the moving plate and the fixed plate of the mold. The size of the 

mold is 200 (horizontal)×230 (vertical)×250 (height) (mm), which uses a cold gate. The injection 

molding machine is the IDE100EN II from the LG company with a maximum molding force of 100 

tons, a maximum injection amount of 150 g, and a maximum injection pressure of 170 MPa. Figure 

6a and b show the actual injection-molded Lensknob and the front and back of the Lensknob, 

respectively. 

 
Figure 6.  Lensknob mold: a) installed mold b) moving half c) fixed half 

 

 
Figure 7. Molded lensknob: a) front b) back 

 
Figure 8.  Analysis model: a) feed system and 

cooling channel b) measurement nodes 

 

We used Moldflow 2021 from Autodesk for the injection molding analysis program. The type of 

mesh used was 3D tetra with 2.93 million meshes. Figure 7a shows the analysis model of the 

https://revmaterialeplastice.ro/


MATERIALE  PLASTICE                                                                                                                                                                
https://revmaterialeplastice.ro 

https://doi.org/10.37358/Mat.Plast.1964 

Mater. Plast., 59 (3), 2022, 128-142                                                               133                               https://doi.org/10.37358/MP.22.3.5611 

 

Lensknob, and Figure 7b shows the position of the nodes selected to measure the concentricity of 

each part. The Lensknob is a transparent product. Because light must be uniformly transmitted due 

to the nature of the Lensknob molded product, uniformity of the circular shape at the center of the 

Lensknob is essential. Therefore, we measured the concentricity of the circular portion located in the 

center of the Lensknob. We used the roundness among the command line functions on Moldflow 

when measuring concentricity shown in Figure 8. 

 

 
Figure 9.  Axial concentricity after deformation 

 

2.2. Creating the data set 

Table 2. Factors and levels 
 Factor Unit Level 

A Melt temperature ˚C 275 295 315 

B Cooling time s 12 16 20 

C Holding time s 1.4 2.7 4 

D Holding pressure MPa 60 66 72 

E Ram speed mm/s 10 15 20 

 

In this study, the melt temperature, cooling time, holding time, holding pressure, and ram speed 

were selected as factors considered to affect the deformation of the Lensknob. These factors were 

based on the recommended range in Moldflow. The details are presented in Table 2. They were 

composed of 5 factors and three levels, and a total of 243 injection molding analyses was performed 

by applying the full factorial method. Table 3 shows 243 process parameters and the results of the 

axial concentricity after deformation for each molded product accordingly. We referred to the axial 

concentricity after deflecting each molded part ①, ②, and ③ as 𝐷1, 𝐷2, and 𝐷3, and their average 

was set as 𝐷𝑎𝑣𝑔. Table 4 shows the fill time, maximum injection pressure, clamp force, and mold 

temperature predicted by Moldflow in the 243 injection molding analyses. The optimization problem 

of the axial concentricity after deformation can be written as Equation (1).  

 

      𝐹𝑖𝑛𝑑: 𝑋𝑛  𝑛 = 𝐴, 𝐵, 𝐶, 𝐷, 𝐸                              (1) 

              𝑚𝑖𝑛: 𝐷𝑎𝑣𝑔 

       𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 275 ≤ 𝑋𝐴 ≤ 315  
                    12  ≤ 𝑋𝐵  ≤ 20 

                              1.4 ≤ 𝑋𝐶  ≤ 20 

                    60  ≤ 𝑋𝐷  ≤ 72 

                    10  ≤ 𝑋𝐸  ≤ 20 

        𝑎𝑛𝑑 𝐷1 ≤ 0.0042; 𝐷2 ≤ 0.0058; 𝐷3 ≤ 0.0207 
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Table 3. Detail on the 243 experiments 
No. A B C D E 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝒂𝒗𝒈 

1 295 12 4 66 15 0.0041 0.0056 0.0207 0.0101 

2 275 20 2.7 60 10 0.0040 0.0055 0.0204 0.0100 

3 295 20 1.4 66 15 0.0042 0.0066 0.0208 0.0105 

⋮ 
241 295 12 1.4 66 15 0.0041 0.0064 0.0207 0.0104 

242 275 16 4 60 15 0.0040 0.0054 0.0205 0.0100 

243 275 20 1.4 72 20 0.0038 0.0062 0.0199 0.0100 

Avg - 0.0042 0.0058 0.0207 0.0102 

 

Table 4. Results of the 243 injection molding analyses 
No. Fill time Maximum injection pressure Clamp force Mold temp. 

1 0.7531 75.65 13.58 88.84 

2 0.7533 90.94 11.68 81.09 

3 0.7522 74.15 13.61 82.90 

⋮ 
241 0.7531 75.65 13.60 88.84 

242 0.7544 89.61 11.51 83.55 

243 0.5646 92.68 14.54 81.09 

Avg 0.8149 77.16 13.49 85.41 

 

3. Results and discussions 
3.1. Analysis of the data set 

We analyzed the interaction and main effects to determine the correlation between the five process 

parameters and target before analyzing the resulting data to train the Decision tree. Figures 10a and 

10b are diagrams showing the interaction and main effect of the factors on the average concentricity 

bias. The interaction plot interprets that interaction does not occur when the lines are parallel. In other 

words, there is no interaction. Therefore, we can interpret the main effect without considering the 

interaction effect. The main effect diagram interprets that an effect exists when the line is not 

horizontal. The main effect is more significant as the slope of the graph line is steep. Therefore, it is 

confirmed that the main effect of the melt temperature is the greatest, and the main effect of the 

cooling time is the smallest. 
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Figure 10. a) Interaction Plot for the average of the 

Deformation b) Main effects plot for the average of the deformation 

 

3.2. Decision tree 

 

 
Figure 11. Process of applying the Decision tree 

 

We used RapidMiner Studio Version Educational 9.10 to create a Decision tree model. The 

advantage of the Decision tree is that due to its high explanatory power, it is easy to grasp which 

variables influence the predicted value and are relatively less sensitive to outliers than other machine 

learning models [29]. Figure 11 briefly describes the process from data input to performance 

evaluation. First, 243 analysis results are inputted as training data. The 'Set Role' operator designates 

the average concentricity measurements as a target. 'Split Data' operator distributes the data at 80% 

training and 20% testing. The 'Apply Model' operator evaluates the test data using the 'Decision tree' 

learned with the training data, and the 'Performance' operator evaluates the statistical performance of 

the model.  

Before analyzing the prediction of the Decision tree, we compared the predictive performance 

with the Generated Linear Model, Deep Learning, and Support Vector Machine models to verify the 

signature of the Decision tree. Figure 12 and Table 5 show the root mean square error (RMSE) of the 

Decision tree, Deep learning, Generalized linear model, and Support vector machine model. RMSE 

is based on equation (2).  

 

    RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1                           (2) 

 𝑦𝑖: true values 

 𝑦̂𝑖: predicted values 
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RMSE is one of the most commonly used indicators for evaluating regression analysis, and it is 

interpreted that as the value gets closer to 0, the performance gets better. All four models manifested 

good reliability within 0.00043, and the RMSE of the Decision tree model was the lowest at 0.00015, 

so we verified that it displayed the best performance among the comparative models.  

 

 
Figure 12. RMSE value compared to the other models 

 

Table 5.  RMSE value compared to the other models 
Model RMSE 

Decision tree 0.00015 

Deep learning 0.00022 

Generalized linear model 0.00020 

Support vector machine 0.00043 

 

3.3. Analysis of the Decision tree 

The Decision tree is like a collection of nodes for generating a target predictive optimal value. 

Each node divides for one specific attribute and repeats the creation of a new node until the criteria 

are met. In the case of a regression model in the Decision tree, the estimate is expressed as a number. 

And the attribute weight represents the functional importance of a given attribute. It is the sum of the 

attributes selected when splitting while improving according to the criteria chosen by the node [30]. 

Figure 13 is a graph showing the weights according to the attributes. The melt temperature had the 

highest weight, followed by the ram speed, holding pressure, holding time, and cooling time. We can 

predict that the melting temperature is the most relevant variable when generating the predicted value. 

In addition, we can expect that the cooling time has the most negligible impact when generating the 

predicted value. 

 

 
Figure 13.  Weight according to the parameters 
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Figure 14a shows a brief concept of the depth of the Decision tree. Figure 14b represents the error 

rate according to the Maximal Depth of the Decision tree. The maximum depth means the most 

profound depth between the divided Leaf node and Root node until the optimal value is determined. 

Excessive depth can lead to Overfitting, leading to poor predictive performance, so proper control is 

required. Based on Figure 14b, we confirmed that the error rate was minimal at 0.99% when the 

maximal depth was 7. When the maximum depth is 7, the Decision tree may generate an optimal 

prediction value. The optimal predicted value was derived when the depth of the Decision tree was 

6, and Figure 14 shows how the Decision Tree makes decisions when the depth was 6. The optimal 

prediction value was derived when the melt temperature was 285°C or lower; the holding pressure 

was 63 MPa or higher; the holding time was 2.05 s or higher, and the Ram speed was 17.5 s or less. 

We assumed that the cooling time was not included among them because the weight of the cooling 

time was the lowest. 

 

 
Figure 14. a) Depth of the Decision tree b) error rate according to the maximal depth 

 

 
Figure 15. Predicted value when the depth is at 6th 

 

3.4. Discussion  

As a result of learning the molding conditions based on the range recommended by Moldflow, the 

optimal molding conditions predicted by the Decision tree were a melting temperature of 283°C, a 

cooling time of 16 s, a holding time of 3.7 s, a holding pressure of 70 MPa, and a ram speed of 14 mm/s, 

and the Davg was 0.0095 mm. Referring to Figure 14, the decision tree shows the path through which we 

obtained the predicted value.  
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We created a criterion for evaluating the decision tree's performance if the decision tree's prediction 

is valid. We conducted one additional molding analysis based on the molding conditions recommended 

by the Samyang Company, a PC Trirex 3022IR supplier. This criterion will be an indicator to confirm 

whether the decision tree prediction has contributed to reducing deformation. Davg was confirmed to be 

0.0106 mm and was set based on this value, and Table 6 shows the results in detail. Therefore, we 

demonstrated that the molding condition predicted by the Decision tree improved the deformation by 

about 10.37% compared to the criterion. Therefore, it is thought that reducing this deformation will help 

diffuse light uniformly because the part where we measured the deformation is the part where light 

diffuses among the parts. 

In addition, to verify the Decision tree's accuracy, we performed molding analysis under the same 

conditions as the molding conditions predicted by the Decision tree. As a result, it was confirmed that 

the error range was 0.0003 mm, and the error percentage was 3.16%. Table 7 shows the accuracy 

between the Davg predicted by the Decision tree and the Davg derived by the molding analysis. 

 

Table 6.  Analysis result of the Decision tree, CAE and criterion 
Parameters A B C D E Predicted Davg 

Decision tree 283 16 3.7 70 14 0.0095 

CAE result 283 16 3.7 70 14 0.0098 

Criterion 285 16 4 47.5 15 0.0106 

 

Table 7. Comparison between the Decision tree results and Analysis results 
 Prediction CAE result Error % Error 

Values 0.0095 0.0098 0.0003 3.1579 

 

Table 8 shows the molding analysis results under the molding conditions predicted by the Decision 

tree and the molding analysis results under the molding conditions as a criterion. Figure 16a represents 

the fill time result value; b represents the maximum injection pressure; c represents the maximum 

clamping force, and d represents the mold temperature result value. 

 

Table 8.  Analysis result of the CAE and criterion 

 Fill time Max. injection pressure Max. clamp force Mold temp. 

CAE result 0.8026 77.24 14.19 47.30~84.37 

Criterion 0.7556 83.26 9.44 47.38~84.57 

 

 CAE result Criterion 

(a) 
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(b) 

  

(c) 

  

(d) 

  

Figure 16.  Results of the analysis based on the predicted optimal parameters: a) fill time  

b) pressure at injection location c) clamp force d) mold temperature 

 

4. Conclusions 
This paper applied the Decision tree model to optimize the concentricity deformation of the 

Lensknob, a small light-guide injection. We conducted 243 injection molding analyses, and as a 

result, training data were generated. Additionally, we trained the Decision tree with the training data. 

We designated the axial concentricity after deformation as the target, and the optimal process 

parameters for minimizing the target were derived using the Decision tree. As a result of the Decision 
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tree analysis, we confirmed that the variable that had the most significant influence on decision-

making was the melt temperature. The variable that had the slightest effect was the cooling time. In 

addition, we confirmed that the predictive performance of the Decision tree was the best when the 

maximum depth of the tree was 7, and the minimum of the target was when the depth was 6th. Finally, 

the predicted optimal molding parameters are a melting temperature of 283°C, cooling time of 16 s, 

holding time of 3.7 s, holding pressure of 70 MPa, and ram speed of 14 mm/s.  

In conclusion, in this study, the deformation of small light-guide injection products was predicted 

using the Decision tree model and improved by 10.37% from a value of 0.0106 in the criterion. In 

addition, to confirm the accuracy of the Decision tree, as a result of performing injection molding 

analysis and comparing it with the optimal parameters derived using Moldflow, we confirmed the 

target value (axial concentricity after deformation) to be 0.0098 mm. Therefore, the results of 

injection molding analysis showed an error rate of 3.16% from 0.0095 mm, the minimum value 

predicted by the Decision tree. 
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